Large-Scale Persistent Network Reconfiguration Induced by Ketamine in Anesthetized Monkeys: Relevance to Mood Disorders
详细信息    查看全文
文摘
Ketamine is a highly attractive candidate for developing fast-onset antidepressant agents; however, the relevant brain circuits that underlie sustained, efficacious antidepressant effects remain largely unknown.

Methods

We used a holistic scheme combining whole-brain resting-state fMRI and graph theoretical analysis to examine the sustained effects on brain networks after administration of a single dose of ketamine and to identify the brain regions and circuits preferentially targeted by ketamine. Topological differences in functional networks of anesthetized macaque monkeys were compared between ketamine (.5 mg/kg) and saline treatment after 18 hours.

Results

We observed persistent global reconfiguration of small-world properties in response to ketamine intake, accompanied by large-scale downregulation of functional connectivity, most prominently in the orbital prefrontal cortex, the subgenual and posterior cingulate cortices, and the nucleus accumbens. Intriguingly, intrinsic connectivity with the medial prefrontal areas in the reward circuits were selectively downregulated. Global and regional regulations of the brain networks precisely opposed the maladaptive alterations in the depressed brain.

Conclusions

Our results demonstrated that local synaptic plasticity triggered by blockade of N-methyl-D-aspartic acid receptors was capable of translating into prolonged network reconfiguration in the distributed cortico-limbic-striatal circuit, providing mechanistic insight into developing specific loci or circuit-targeted, long-term therapeutics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700