Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization
详细信息    查看全文
文摘
Thermo- and pH-responsive polypropylene microporous membrane prepared by photoinduced reversible addition–fragmentation chain transfer (RAFT) graft copolymerization of acrylic acid and N-isopropyl acrylamide by using dibenzyltrithiocarbonate as a RAFT agent. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Results of ATR/FT-IR and XPS clearly indicated that poly(acrylic acid) (PAAc) and poly(N-isopropyl acrylamide) (PNIPAAm) were successfully grafted onto the membrane surface. The grafting chain length of PAAc on the membrane surface increased with the increase of UV irradiation time, and decreased with the increase of the concentration of chain transfer agent. The PAAc grafted membranes containing macro-chain transfer agents, or the living membrane surfaces were further functionalized via surface-initiated block copolymerization with N-isopropyl acrylamide in the presence of free radical initiator, 2,2′-azobisisobutyronitrile. It was found that PNIPAAm can be grafted onto the PAAc grafted membrane surface. The results demonstrated that polymerization of AAc and NIPAAm by the RAFT method could be accomplished under UV irradiation and the process possessing the living character. The PPMMs with PAAc and PNIPAAm grafting chains exhibited both pH- and temperature-dependent permeability to aqueous media.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700