Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions
详细信息    查看全文
文摘
Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free, chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film, using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology, proliferation and expressed high levels of markers of pluripotency, similar to the cells cultured on Matrigel?. Moreover, the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined, xeno-free and safe substrate, which supports long-term proliferation and self-renewal of hiPSC, will not only help to accelerate the translational perspectives of hiPSC, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700