Use of parallel deterministic dynamic programming and hierarchical adaptive genetic algorithm for reservoir operation optimization
详细信息    查看全文
文摘
Reservoir operation optimization (ROO) is a complicated dynamically constrained nonlinear problem that is important in the context of reservoir system operation. In this study, parallel deterministic dynamic programming (PDDP) and a hierarchical adaptive genetic algorithm (HAGA) are proposed to solve the problem, which involves many conflicting objectives and constraints. In the PDDP method, multi-threads are found to exhibit better speed-up than single threads and to perform well for up to four threads. In the HAGA, an adaptive dynamic parameter control mechanism is applied to determine parameter settings, and an elite individual is preserved in the archive from the first hierarchy to the second hierarchy. Compared with other methods, the HAGA provides a better operational result with greater effectiveness and robustness because of the population diversity created by the archive operator. Comparison of the results of the HAGA and PDDP shows two contradictory objectives in the ROO problem-economy and reliability. The simulation results reveal that: compared with proposed PDDP, the proposed HAGA integrated with parallel model appears to be better in terms of power generation benefit and computational efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700