Directional-stability-aware brake blending control synthesis for over-actuated electric vehicles during straight-line deceleration
详细信息    查看全文
文摘
For the purpose of both energy regeneration and directional stability enhancement, regenerative and hydraulic blended braking control of an over-actuated electric vehicle equipped with four individual on-board motors during normal straight-line deceleration is studied. System models which include the vehicle dynamics, tire, electric powertrain, and hydraulic brake models are developed. Mechanisms of directional instability of the electric vehicle during straight-line braking are analyzed. To improve the electric vehicle's safety and performance, novel compensation methods through blended braking are studied. On the basis of half-shaft torque estimation, two new regenerative braking control algorithms are proposed. Simulations of the developed control algorithms are carried out during normal straight-line braking maneuvers. The results and discussions demonstrate that the developed approaches are advantageous when compared with the conventional baseline strategy, with respect to both the directional stability and regeneration efficiency, thus validating the feasibility and effectiveness of the controller synthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700