Calcium regulates the interaction of amyloid precursor protein with Homer3 protein
详细信息    查看全文
文摘
Ca2+ dysregulation is an important factor implicated in Alzheimer's disease pathogenesis. The mechanisms mediating the reciprocal regulation of Ca2+ homeostasis and amyloid precursor protein (APP) metabolism, function, and protein interactions are not well known. We have previously shown that APP interacts with Homer proteins, which inhibit APP processing toward amyloid-. In this study, we investigated the effect of Ca2+ homeostasis alterations on APP/Homer3 interaction. Influx of extracellular Ca2+ upon treatment of HEK293 cells with the ionophore A23187 or addition of extracellular Ca2+ in cells starved of calcium specifically reduced APP/Homer3 but not APP/X11a interaction. Endoplasmic reticulum Ca2+ store depletion by thapsigargin followed by store-operated calcium entry also decreased the interaction. Interestingly, application of a phospholipase C stimulator, which causes inositol 1,4,5-trisphosphate-induced endoplasmic reticulum Ca2+ release, caused dissociation of APP/Homer3 complex. In human neuroblastoma cells, membrane depolarization also disrupted the interaction. This is the first study showing that changes in Ca2+ homeostasis affect APP protein interactions. Our results suggest that Ca2+ and Homers play a significant role in the development of Alzheimer's disease pathology.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700