High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments
详细信息    查看全文
文摘
For solving time-dependent convection-dominated partial differential equations (PDEs), which arise frequently in computational physics, high order numerical methods, including finite difference, finite volume, finite element and spectral methods, have been undergoing rapid developments over the past decades. In this article we give a brief survey of two selected classes of high order methods, namely the weighted essentially non-oscillatory (WENO) finite difference and finite volume schemes and discontinuous Galerkin (DG) finite element methods, emphasizing several of their recent developments: bound-preserving limiters for DG, finite volume and finite difference schemes, which address issues in robustness and accuracy; WENO limiters for DG methods, which address issues in non-oscillatory performance when there are strong shocks, and inverse Lax–Wendroff type boundary treatments for finite difference schemes, which address issues in solving complex geometry problems using Cartesian meshes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700