Wall shear stress effects of different endodontic irrigation techniques and systems
详细信息    查看全文
文摘

Objectives

This study examined d¨¦bridement efficacy as a result of wall shear stresses created by different irrigant delivery/agitation techniques in an inaccessible recess of a curved root canal model.

Methods

A reusable, curved canal cavity containing a simulated canal fin was milled into mirrored titanium blocks. Calcium hydroxide (Ca(OH)2) paste was used as debris and loaded into the canal fin. The titanium blocks were bolted together to provide a fluid-tight seal. Sodium hypochlorite was delivered at a previously-determined flow rate of 1 mL/min that produced either negligible or no irrigant extrusion pressure into the periapex for all the techniques examined. Nine irrigation delivery/agitation techniques were examined: NaviTip passive irrigation control, Max-i-Probe? side-vented needle passive irrigation, manual dynamic agitation (MDA) using non-fitting and well-fitting gutta-percha points, EndoActivator? sonic agitation with medium and large points, VPro? EndoSafe? irrigation system, VPro? StreamClean? continuous ultrasonic irrigation and EndoVac apical negative pressure irrigation. D¨¦bridement efficacies were analysed with Kruskal-Wallis ANOVA and Dunn's multiple comparisons tests (¦Á = 0.05).

Results

EndoVac was the only technique that removed more than 99 % calcium hydroxide debris from the canal fin at the predefined flow rate. This group was significantly different (p < 0.05) from the other groups that exhibited incomplete Ca(OH)2 removal.

Conclusions

The ability of the EndoVac system to significantly clean more debris from a mechanically inaccessible recess of the model curved root canal may be caused by robust bubble formation during irrigant delivery, creating higher wall shear stresses by a two-phase air-liquid flow phenomenon that is well known in other industrial d¨¦bridement systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700