Cost Optimization Method of Large-scale Prestressed Wire Winded Framework on Multiple-island Genetic Algorithm
详细信息    查看全文
文摘
Prestressed wire winded framework (PWWF) is an advanced structure and the most expensive part in the large-scale equipment. The traditional design of PWWF is complicated, highly iterative and cost uncontrolable, because PWWF is a variable stiffness multi-agent structure, with non-linear loading and deformation coordination. In this paper, cost optimization method of large-scale PWWF by multiple-island genetic algorithm (MIGA) is presented. Optimization design flow and optimization model are proposed based on variable-tension wire winding theory. An example of the PWWF cost optimization of isostatic equipment with axial load 6 000 kN is given. The optimization cost is reduced by 21.6 % compared with traditional design. It has also been verified by the finite-element analysis and successfully applied to an actual PWWF design of isostatic press. The results show that this method is efficient and reliable. This method can also provide a guide for optimal design for ultra-large dimension muti-frame structure of 546 MN and 907 MN isostatic press equipment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700