An adaptive tracking controller for parallel robotic manipulators based on fully tuned radial basic function networks
详细信息    查看全文
文摘
Parallel robotic manipulators have a complicated dynamic model due to the presence of multi-closed-loop chains and singularities. Therefore, the control of them is a challenging and difficult task. In this paper, a novel adaptive tracking controller is proposed for parallel robotic manipulators based on fully tuned radial basis function networks (RBFNs). For developing the controller, a dynamic model of a general parallel manipulator is developed based on D壮Alembert principle and principle of virtual work. RBFNs are utilized to adaptively compensate for the modeling uncertainties, frictional terms and external disturbances of the control system. The adaptation laws for the RBFNs are derived to adjust on-line the output weights and both the centers and variances of Gaussian functions. The stability of the closed-loop system is ensured by using the Lyapunov method. Finally, a simulation example is conducted for a 2 degree of freedom (DOF) parallel manipulator to illustrate the effectiveness of the proposed controller.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700