Distributed parameter modeling and finite-frequency loop-shaping of electromagnetic molding machine
详细信息    查看全文
文摘
We derive a mathematical model for an electromagnet inside a molding machine, and propose a novel loop-shaping method of the proportional-integral (PI) controller design for the system based on the generalized KYP (GKYP) lemma. The behavior of the molding machine is difficult to capture by using finite-dimensional models owing to eddy currents spatially distributed throughout the electromagnet. To analyze fundamental properties of the system both theoretically and experimentally, we first derive a mathematical model of the machine in terms of a partial differential equation (PDE). An analysis using the PDE model shows that a low-dimensional approximation performed by standard spatial discretization results in a spillover effect, which makes the behavior of the closed-loop system oscillatory. Then, to develop an easily tunable and implementable control system, we propose a novel loop-shaping method for PI control on the basis of the GKYP lemma. In this control system design, we use multiple low-dimensional models, which work simultaneously in specified finite frequency ranges. The proposed method successfully suppresses the spillover effect despite the use of low-dimensional approximants. Finally, we show the efficiency of the proposed control design method through numerical and experimental verification and discuss a performance limitation of the PI control.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700