A comprehensive experimental and kinetic modeling study of ethylbenzene combustion
详细信息    查看全文
文摘
The flow reactor pyrolysis and jet-stirred reactor (JSR) oxidation of ethylbenzene are investigated in this work. The flow reactor pyrolysis is studied at pressures of 0.04, 0.2, and 1.0 atm and temperatures from 850 to 1500 K using synchrotron vacuum ultraviolet photoionization mass spectrometry. The jet-stirred reactor oxidation is studied at 1 atm with three equivalence ratios (ϕ = 0.5, 1.0, and 1.5) and at 10 atm with the equivalence ratio of 1.0, using gas chromatography and Fourier transform infrared spectroscopy for mole fractions measurements. A detailed kinetic model of ethylbenzene pyrolysis and oxidation is developed by extending our recently reported oxidation models for toluene and styrene, and is validated on the new experimental data reported here. The benzyl radical and styrene are demonstrated to be the most important intermediates in both the pyrolysis and oxidation of ethylbenzene. For the JSR oxidation of ethylbenzene, the low temperature chemistry is found to play a significant role at 10 atm. The present model is also validated on the experimental data from the literature, including the species concentration profiles and global combustion parameters such as ignition delay times and laminar flame speeds. The good performance of the model for reproducing these data reveals its ability to predict ethylbenzene combustion over a wide range of conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700