Silicon isotope fractionation in silicate minerals: Insights from first-principles models of phyllosilicates, albite and pyrope
详细信息    查看全文
文摘
Isotopic fractionation factors for oxygen and silicon in phyllosilicates (pyrophyllite, talc), albite and pyrope have been calculated using first-principles methods based on density functional theory. Based on exhaustive analysis of numerical convergence, we also update our previous calculations on enstatite and forsterite silicon fractionation properties. Calculated oxygen isotope fractionations agree well with existing estimates for talc and albite. In the case of silicon, qualitative agreement is found with natural data. For phyllosilicates (kaolinite, lizardite, pyrophyllite, talc), Si isotope fractionation properties appear to be correlated with stoichiometry:

equation1
View the MathML source

where Sieq. =#Si, View the MathML source and View the MathML source (cation equivalents) are the charge-weighed stoichiometric coefficients of each cation, normalized to the charge of the silicon atom, and aX(T) are proportionality coefficients depending on temperature. It is suggested that the effect of cation X on Si isotope fractionation (i.e. aX(T)) will increase with decreasing electronegativity of X. Si isotope fractionation is further correlated with Si–O distances, suggesting a crystal chemical explanation for relation (1) in terms of electron donation effects. This relationship appears valid for quartz, pyrope and enstatite View the MathML source, but forsterite is strongly anomalous (error of 0.7‰ at 600 °C). These models indicate that attention should be given to chemical compositions in Si isotope studies. Relation (1) would explain the enrichment in heavy silicon isotopes accompanying magmatic differentiation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700