Mechanism of the prolongation of the green afterglow of SrAl2O4:Dy3+ caused by the use of H3BO3 flux
详细信息    查看全文
文摘
Significant prolongation in the green afterglow of SrAl2O4:Dy3+ was achieved by adding 10 mol% H3BO3 into the starting material. The surface morphology, crystalline structure, chemical composition, photoluminescence, afterglow and decay characteristics of the phosphor were characterized by scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, transmission electron microscopy, photoluminescence and photoexcitation spectroscopy, respectively. It was found that the afterglow time constant of the green afterglow from SrAl2O4:Dy3+ phosphor could be enhanced over 100 folds from 53 to 5538 s after the addition of 10 mol% H3BO3 flux. No traces of Eu were found in the phosphors within the 1 μg/g detection limit of the inductively coupled plasma atomic emission spectrometry. By employing meta generalized gradient approximation to describe the exchange–correlation functional, the band structures of SrAl2O4:Dy3+ were calculated within the framework of density functional theory. The ground state of Dy3+ ions and the defect levels of height="14" width="21" alt="View the MathML source" style="margin-top: -5px; vertical-align: middle" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022231316304719-si0001.gif">, height="17" width="19" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022231316304719-si0002.gif"> and height="17" width="20" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022231316304719-si0003.gif"> were quantitatively determined in the band gap of SrAl2O4. A possible afterglow mechanism was proposed to shed fresh light on the green afterglow of SrAl2O4:Dy3+. The significant prolongation in the afterglow of SrAl2O4:Dy3+ can be attributed to the H3BO3 flux introduced height="17" width="20" alt="View the MathML source" title="View the MathML source" src="/sd/grey_pxl.gif" data-inlimgeid="1-s2.0-S0022231316304719-si0003.gif"> in the host lattice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700