Mechanochemical approach to get layered double hydroxides: Mechanism explore on crystallite growth
详细信息    查看全文
文摘
In this paper, the mechanochemical approach, which includes solid state reactions and hydrothermal treatment, has been proposed to synthesize magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). Specially, the reaction process of solid state reactions has been explored, and it presents that crystallite growth is the rate-controlling process. The hydrothermal treatment is performed after solid state reactions, on one hand, the crystallinity and monodispersity of final LDHs particles can be improved, on the other hand, such treatment can tailor the particle size efficiently. Furthermore, the relationship between particle size and hydrothermal conditions (time and temperature) has been systematically investigated, which indicates that the particle size and monodispersity can be effectively controlled. The crystallite growth along a-b plane and c-axis has been emphatically discussed, and the results show that under relatively low temperatures such as 100 掳C, the gradual growth along c-axis has been found in the range of 48 h, and high temperatures will hider its growth on the contrary. Crystal growth along a-b plane could be accelerated by higher hydrothermal temperature and longer treatment time. Our studies also show that during the hydrothermal treatment, such events as aggregation, disaggregation and particle growth, occur in series or in parallel with time. At last, the Mg-Al-CO3-LDHs samples (synthesized at 100 掳C for 24, 36 and 48 h) which were acid activated by HCOOH were used to adsorb fluoride ions present in aqueous solution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700