Parametric instability of cylindrical thin shell with periodic rotating speeds
详细信息    查看全文
文摘
Parametric instability of a cylindrical thin shell with periodically time-varying rotating speeds is studied in the paper. Energy formulation based upon Love's thin shell theory and the assumed mode method is utilized to obtain the governing equations of a rotating cylindrical shell under simply supported condition. Considering the time-varying rotating speeds, the second order differential equations of the system have time-periodic gyroscopic and stiffness coefficients. The multiple scales method is utilized to obtain the boundaries of both primary and combination instabilities analytically. The primary instability occurs when the excitation frequency is near twice of the natural frequency. The excitation frequency close to the sum of two natural frequencies might lead to the occurrence of combination instability. Numerical simulations are conducted to verify the analytical results. It is shown that the primary instability regions for each mode always appear in the periodically rotating cylindrical shell. Their widths increase continually with excitation amplitude of the time-periodic rotating speed. For certain modes, the combination instability region might not exist. The conditions for its existence are obtained analytically and verified by numerical simulations. Increasing the constant rotating speed would greatly enhance the instability regions. Moreover, it might also cause the appearance of combination instability region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700