Excitonic transitions in spherical inhomogeneous QD, new monocolor nanosource
详细信息    查看全文
文摘
We study in this investigation the excitonic transitions in new spherical nanosystems also called inhomogeneous quantum dots IQD. They are promising in many technological applications: photovoltaic, LED, QD Laser and quantum computing. The excitonic binding energy significantly increases; which gives them greater stability at room temperature. The well-semiconductors in these nanostructures become luminescent under dual control core–well, in a wide spectral range from near UV to near and medium infrared IR. These optical properties enriched the field of IQD which generally have a high quantum efficiency and high photostability.

The IQD presented are made out off ZnSe/HgS/ZnSe; CdS/GaSb/CdS; ZnS/HgS/ZnS and CdS/InSb/CdS modeled by a spherical well with infinite potential. Our theoretical investigation shows that the high degree of confinement in the well retains the 1se−1pe−2se (1sh−1ph−2sh) order, guarantees excitonic transitions and isolates the ground state 1se−1sh (View the MathML source can be exceed 6 eV).

The strong confinement provided by the infinite barrier, reduces the population relaxation and limit the coupling between the well and the electrostatic environment. These results qualify the nanostructure as a monocolor source and a system of two levels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700