Trnp1 Regulates Expansion and Folding of the Mammalian Cerebral Cortex by Control of Radial Glial Fate
详细信息    查看全文
文摘
| Figures/TablesFigures/Tables | ReferencesReferencesion=""1.0"" encoding=""UTF-8""?>

Summary

Evolution of the mammalian brain encompassed a remarkable increase in size of the cerebral cortex, which includes tangential and radial expansion. However, the mechanisms underlying these key features are still largely unknown. Here, we identified the DNA-associated protein Trnp1 as a regulator of cerebral cortex expansion in both of these dimensions. Gain- and loss-of-function experiments in the mouse cerebral cortex in?vivo demonstrate that high Trnp1 levels promote neural stem cell self-renewal and tangential expansion. In contrast, lower levels promote radial expansion, with a potent increase of the number of intermediate progenitors and basal radial glial cells leading to folding of the otherwise smooth murine cerebral cortex. Remarkably, TRNP1 expression levels exhibit regional differences in the cerebral cortex of human fetuses, anticipating radial or tangential expansion. Thus, the dynamic regulation of Trnp1 is critical to control tangential and radial expansion of the cerebral cortex in mammals.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700