Balancing task- and data-level parallelism to improve performance and energy consumption of matrix computations on the Intel Xeon Phi
详细信息    查看全文
文摘
The emergence of new manycore architectures, such as the Intel Xeon Phi, poses new challenges in how to adapt existing libraries and applications to this type of systems. In particular, the exploitation of manycore accelerators requires a holistic solution that simultaneously addresses time-to-response, energy efficiency and ease of programming. In this paper, we adapt the SuperMatrix runtime task scheduler for dense linear algebra algorithms to the many-threaded Intel Xeon Phi, with special emphasis on the performance and energy profile of the solution. From the performance perspective, we optimize the balance between task- and data-parallelism, reporting notable results compared with Intel MKL. From the energy-aware point of view, we propose a methodology that relies on core-level event counters and aggregated power consumption samples to obtain a task-level accounting for the energy. In addition, we introduce a blocking mechanism to reduce power and energy consumption during the idle periods inherent to task parallel executions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700