Behaviour of pultruded beam-to-column joints using steel web cleats
详细信息    查看全文
文摘
Response of pultruded Fibre Reinforced Polymer (FRP) beam-to-column joints with steel bolted web cleats is studied through physical testing. Two joint configurations are considered with either three or two bolts per cleat leg, as per drawings in a pultruder's Design Manual. Moment-rotation curves, failure modes and potential performance gains from semi-rigid action are determined from two batches, each having six nominally identical joints. Results show that initial joint properties for stiffness and moment can possess, at 19 to 62 % , an extremely high coefficient of variation. All joints failed by fracturing within the FRP column's flange outstands. Because this failure mode has not been reported previously there is a need to establish how its existence influences joint design. As joint properties for the three- and two-bolted configurations are not significantly different, the middle (third) bolt is found to be redundant. Damage is shown to initiate within the column flange outstands when the mid-span deflection of a 5.08 m span beam, subjected to a uniformly distributed load, is span/500. This is half the serviceability vertical deflection limit recommended in the EUROCOMP Design Code and Handbook. The mean joint moment resistance for design is established to be 2.9 kNm and this is 1.5 times the moment for damage onset.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700