Spatial emission distribution of a pulsed radiofrequency glow discharge: Influence of the pulse frequency
详细信息    查看全文
文摘
A pulsed radiofrequency Glow Discharge (pulsed rf GD) plasma has been spectroscopically characterized by performing side-on measurements of the emitted radiation. The effect of varying the pulse frequency (e.g. between 100 and 10,000 Hz), while keeping the duty cycle constant at 25 % , has been investigated on different argon and analyte (i.e. copper) emission lines, at different plasma locations. In particular, it is observed that an intermediate frequency of 2.5 kHz favors the excitation of the argon atoms, while the argon ions are preferably excited by lower frequencies (e.g. longer pulse widths). Moreover, the excitation of copper atoms has a strong dependence on the upper energy level, and it has been noticed that the emission from higher levels is favored by the use of lower pulsed-rf frequencies. On the other hand, it has been found that the spatial distribution of the gas species and the analyte species (i.e. Ar and Cu, respectively) differ from each other: the atomic argon emission extends longer along the plasma plume than the atomic copper emission. Furthermore, ionic species have their maximum emission signal in the region close to the anode; however, their emission signal decay quite fast at increasing distances to the anode. Nevertheless, it should be highlighted that it is possible to detect ionic emission at distances far away from the negative glow; in regions where usually the sampler cone interface is placed in GD-MS instruments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700