N-[18F]-FluoropropylJDTic for κ-opioid receptor PET imaging: Radiosynthesis, pre-clinical evaluation, and metabolic investigation in comparison with parent JDTic
详细信息    查看全文
文摘
To image kappa opioid receptor (KOR) for preclinical studies, N-fluoropropylJDTic 9 derived from the best-established KOR antagonist JDTic, was labeled with fluorine-18.MethodsRadiosynthesis of [18F]9 was achieved according to an automated two-step procedure from [18F]-fluoride. Peripheral and cerebral distributions were determined by ex vivo experiments and by PET imaging in mouse. Radiometabolism studies were performed both in vivo in mice and in vitro in mouse and human liver microsomes. Identification of the major metabolic fragmentations was carried out by UPLC-MS analysis of enzymatic cleavage of non-radioactive ligand 9. Microsomal metabolic degradation of parent JDTic was also achieved for comparison.ResultsThe radiotracer [18F]9 was produced after 140 ± 5 min total synthesis time (2.2 ± 0.4% not decay corrected radiochemical yield) with a specific activity of 41–89 GBq/μmol (1.1–2.4 Ci/μmol). Peripheral and regional brain distributions of [18F]9 were consistent with known KOR locations but no significant specific binding in brain was shown. [18F]9 presented a typical hepatobiliary and renal elimination, and was rapidly metabolized. The in vivo and in vitro radiometabolic profiles of [18F]9 were similar. Piperidine 12 was identified as the major metabolic fragment of the non-radioactive ligand 9. JDTic 7 was found to be much more stable than 9.ConclusionAlthough the newly proposed radioligand [18F]9 was concluded to be not suitable for KOR PET imaging due to the formation of brain penetrating radiometabolites, our findings highlight the metabolic stability of JDTic and may help in the design of novel JDTic derivatives for in vivo applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700