Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna
详细信息    查看全文
文摘
Zinc demonstrates protective and antioxidant properties at physiological levels, although these characteristics are not attributed at moderate or high concentrations. Zinc toxicity has been related to a number of factors, including interference with antioxidant defenses. In particular, the inhibition of glutathione reductase (GR) has been suggested as a possible mechanism for acute zinc toxicity in bivalves. The present work investigates the biochemical effects of a non-lethal zinc concentration on antioxidant-related parameters in gills of brown mussels Perna perna exposed for 21 days to 2.6 渭M zinc chloride. After 2 days of exposure, zinc caused impairment of the antioxidant system, decreasing GR activity and glutathione levels. An increase in antioxidant defenses became evident at 7 and 21 days of exposure, as an increase in superoxide dismutase and glutathione peroxidase activity along with restoration of glutathione levels and GR activity. After 7 and 21 days, an increase in cellular peroxides and lipid peroxidation end products were also detected, which are indicative of oxidative damage. Changes in GR activity contrasts with protein immunoblotting data, suggesting that zinc produces a long lasting inhibition of GR. Contrary to the general trend in antioxidants, levels of peroxiredoxin 6 decreased after 21 days of exposure. The data presented here support the hypothesis that zinc can impair thiol homeostasis, causes an increase in lipid peroxidation and inhibits GR, imposing a pro-oxidant status, which seems to trigger homeostatic mechanisms leading to a subsequent increase on antioxidant-related defenses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700