Identifying vegetation from laser data in structured outdoor environments
详细信息    查看全文
文摘
The ability to reliably detect vegetation is an important requirement for outdoor navigation with mobile robots as it enables the robot to navigate more efficiently and safely. In this paper, we present an approach to detect flat vegetation, such as grass, which cannot be identified using range measurements. This type of vegetation is typically found in structured outdoor environments such as parks or campus sites. Our approach classifies the terrain in the vicinity of the robot based on laser scans and makes use of the fact that plants exhibit specific reflection properties. It uses a support vector machine to learn a classifier for distinguishing vegetation from streets based on laser reflectivity, measured distance, and the incidence angle. In addition, it employs a vibration-based classifier to acquire training data in a self-supervised way and thus reduces manual work. Our approach has been evaluated extensively in real world experiments using several mobile robots. We furthermore evaluated it with different types of sensors and in the context of mapping, autonomous navigation, and exploration experiments. In addition, we compared it to an approach based on linear discriminant analysis. In our real world experiments, our approach yields a classification accuracy close to 100%.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700