Thermochemical Solar Energy Storage Via Redox Oxides: Materials and Reactor/Heat Exchanger Concepts
详细信息    查看全文
文摘
Thermochemical Storage of solar heat exploits the heat effects of reversible chemical reactions for the storage of solar energy. Among the possible reversible gas-solid chemical reactions, the utilization of a pair of redox reactions of multivalent solid oxides can be directly coupled to CSP plants employing air as the heat transfer fluid bypassing the need for a separate heat exchanger.

The present work concerns the development of thermochemical storage systems based on such oxide-based redox materials and in particular on cobalt oxide; in the one hand by tailoring their heat storage/release capability and on the other hand via their incorporation in proper reactor/heat exchanger devices. In this respect the first stage of the work involved parametric testing of cobalt oxide compositions via Thermo-Gravimetric Analysis to comparatively investigate the temperature range for cyclic oxidation-reduction and optimize the cycle conditions for maximum reduction and re-oxidation extent. Subsequently, two reactor concepts for the coupling of solar energy to the redox reactions have been implemented and tested. These reactor concepts include in one hand structured ceramic reactors/heat exchangers based on redox-oxide-coated honeycombs and on the other hand powder-fed, solar-heated, rotary kiln reactors. The two reactor concepts were tested within non-solar-aided lab-scale and solar- aided campaigns, respectively. The feasibility of both concepts was shown and good chemical conversions were achieved. The experiments pointed out the challenging points related to the manufacture of pilot-scale reactors/heat exchangers with enhanced heat storage capacity. A numerical model using commercial CFD software is developed to define optimal geometrical characteristics and operating conditions and refine the pilot scale design in order to achieve efficient, long-term off-sun operation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700