Implication of JNK pathway on tau pathology and cognitive decline in a senescence-accelerated mouse model
详细信息    查看全文
文摘
The senescence accelerated mouse-prone 8 (SAMP8) strain of mice is an experimental model of accelerated senescence that also shares several pathological features with Alzheimer's disease. Among them, cognitive impairments and abnormal hyperphosphorylation of tau are ameliorated by the phosphodiesterase 5 inhibitor sildenafil, possibly through the modulation of Cdk5/p25 and Akt/GSK-3¦Â pathways. Here we studied the implication of protein phosphatase 2A (PP2A) and c-Jun N-terminal kinase (JNK) in the therapeutic effects of sildenafil. Results demonstrated that there were no differences in hippocampal PP2A protein levels or activity (measured by its inactive isoform phopho-PP2A Y307) when we compared 6-month old SAMP8 mice and age-matched control, SAMR1 mice, treated with saline or sildenafil (7.5 mg/kg i.p. for 4 weeks). However, this same treatment of sildenafil, that had been shown to reverse the cognitive impairment and tau hyperphosphorylation in this animal model, also reversed the increased levels of activated JNK (p-JNK) found in the hippocampus of SAMP8 mice. Moreover, the administration of the JNK inhibitor, D-JNKI-1 (0.2 mg/kg i.p. for 3 weeks) also ameliorated the cognitive deficits shown by SAMP8 mice in the Morris water maze and decreased hippocampal levels of phospho-c-Jun(Ser73). When phosphorylated tau (AT8 epitope) was analyzed a significant reduction was observed in the hippocampus of D-JNKI-1 treated SAMP8 mice, providing a plausible explanation for the attenuation of cognitive decline shown by these animals. These findings suggest the involvement of the JNK pathway on tau pathology and cognitive deficits shown by 6-month old SAMP8 mice. They also point to the modulation of this kinase to be among the mechanisms responsible for the beneficial effects shown by sildenafil.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700