Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces
详细信息    查看全文
文摘
Ultraviolet (UV) radiation responsive surfaces, with tunable wetting properties, are fabricated by spin casting polystyrene/titania nanocomposite dispersion in tetrahydrofuran on silicon substrates. The prepared samples are found hydrophilic due to the presence of the water miscible solvent. Upon annealing, as the solvent evaporates, samples become superhydrophobic due to presence of hydrophobic polystyrene and formation of nano and micro scale surface roughness due to titania nanoparticles. Effect of different annealing temperatures and time on resulting wettability is investigated. Photocatalytic property of titania is exploited to make transition from superhydrophobic to hydrophilic state upon UV exposure. Subsequently, upon annealing again at elevated temperatures for sufficient time, the UV exposed hydrophilic samples recover their superhydrophobicity showing transition from hydrophilic to superhydrophobic state. Detailed static and dynamic study of these reversible transitions, between superhydrophobic and hydrophilic states, due to UV exposure and annealing is presented in this article.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700