Quantum-mechanical analysis of the electrostatics in silicon-nanowire and carbon-nanotube FETs
详细信息    查看全文
文摘
In this work we investigate the electrostatics of the top-gate carbon-nanotube FET (CNT-FET) and the silicon-based Π-gate FET at the ITRS 22 nm node. In order to do so, we solve the coupled Schrödinger and Poisson equations within the cross-section of each device, and compare the channel-charge and capacitance curves as functions of the gate voltage. This study shows that, for a fixed cross-sectional area, the quantitative differences between the two devices are small both in terms of charge and capacitance. The use of a classical model for the Π-gate FET shows instead that the resulting discrepancies with respect to the quantum-mechanical (QM) model are very relevant using both the Boltzmann and Fermi statistics. Thus, accounting for quantum-mechanical effects is essential for a realistic prediction of the device on-current and transconductance at the feature sizes considered here. The effect of high-κ dielectrics is also addressed. As opposed to planar-gate devices, the electrostatic performance of Si-based Π-gate FETs and CNT-FETs is not adversely affected by the use of different insulating materials with the same equivalent oxide thickness. As a consequence, not only do high-κ dielectrics relieve the gate-leakage problem; they also improve the device performance in terms of the gate-control effectiveness over the channel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700