Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia
详细信息    查看全文
文摘
Sleep disturbances have been reliably reported in patients with schizophrenia, thus suggesting that abnormal sleep may represent a core feature of this disorder. Traditional electroencephalographic studies investigating sleep architecture have found reduced deep non-rapid eye movement (NREM) sleep, or slow wave sleep (SWS), and increased REM density. However, these findings have been inconsistently observed, and have not survived meta-analysis. By contrast, several recent EEG studies exploring brain activity during sleep have established marked deficits in sleep spindles in schizophrenia, including first-episode and early-onset patients, compared to both healthy and psychiatric comparison subjects. Spindles are waxing and waning, 12–16 Hz NREM sleep oscillations that are generated within the thalamus by the thalamic reticular nucleus (TRN), and are then synchronized and sustained in the cortex. While the functional role of sleep spindles still needs to be fully established, increasing evidence has shown that sleep spindles are implicated in learning and memory, including sleep dependent memory consolidation, and spindle parameters have been associated to general cognitive ability and IQ. In this article we will review the EEG studies demonstrating sleep spindle deficits in patients with schizophrenia, and show that spindle deficits can predict their reduced cognitive performance. We will then present data indicating that spindle impairments point to a TRN-MD thalamus-prefrontal cortex circuit deficit, and discuss about the possible molecular mechanisms underlying thalamo-cortical sleep spindle abnormalities in schizophrenia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700