QCD compositeness as revealed in exclusive vector boson reactions through double-photon annihilation: e+e → γγ → γV0 and e+e → γγ → V0V0
详细信息    查看全文
文摘
We study the exclusive double-photon annihilation processes, e+e−→γγ⁎→γV0e+e−→γγ⁎→γV0 and e+e−→γ⁎γ⁎→Va0Vb0, where the Vi0 is a neutral vector meson produced in the forward kinematical region: s≫−ts≫−t and −t≫ΛQCD2. We show how the differential cross sections dσdt, as predicted by QCD, have additional falloff in the momentum transfer squared t   due to the QCD compositeness of the hadrons, consistent with the leading-twist fixed-θCMθCM scaling laws, both in terms of conventional Feynman diagrams and by using the AdS/QCD holographic model to obtain the results more transparently. However, even though they are exclusive channels and not associated with the conventional electron–positron annihilation process e+e−→γ⁎→qq¯, these total cross sections σ(e+e−→γV0)σ(e+e−→γV0) and σ(e+e−→Va0Vb0), integrated over the dominant forward- and backward-θCMθCM angular domains, scale as 1/s1/s, and thus contribute to the leading-twist scaling behavior of the ratio Re+e−Re+e−. We generalize these results to exclusive double-electroweak vector-boson annihilation processes accompanied by the forward production of hadrons, such as e+e−→Z0V0e+e−→Z0V0 and e+e−→W−ρ+e+e−→W−ρ+. These results can also be applied to the exclusive production of exotic hadrons such as tetraquarks, where the cross-section scaling behavior can reveal their multiquark nature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700