Experimental investigation of velocity and length of elongated bubbles for flow of R-134a in a 0.5 mm microchannel
详细信息    查看全文
文摘
The length and velocity of elongated bubbles have been experimentally investigated for R-134a flowing in a 0.5 mm microchannel, where 440 experimental data points were obtained at the exit of a microevaporator using an optical laser measurement technique. The variation of the elongated bubble velocity uv as a function of its length Lv shows firstly, a nearly linear increase of uv with Lv and secondly, a region where the velocity tends towards a plateau and where it varies little with further increase in length. This behavior is the starting point to explain merging between elongated bubbles in microchannels during flow boiling. No influence of a small variation in the inlet subcooling (ranging from 2 to 5 °C) and the microevaporator length (ranging from 30 to 70 mm) was observed on the bubble velocity and the bubble length. On the other hand, when decreasing the saturation temperature, the bubble length and the bubble velocity both increased due to the decrease in the vapor density. Almost 92 % of the new database obtained here is predicted by the elongated bubble velocity model of Agostini et al. [B. Agostini, R. Revellin, J.R. Thome, Elongated bubbles in microchannels. Part I: Experimental study and modelisation of elongated bubble velocity. Int. J. Multiphase Flow, in press] within a ±20 % error band. Furthermore, this model shows that during diabatic flow boiling of elongated bubbles in horizontal microchannels, the drift flux distribution parameter C is close to unity and the drift velocity is not necessarily equal to zero as predicted by the original drift flux model of Zuber and Findlay [N. Zuber, J.A. Findlay, Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 458–463]. Rather the drift velocity can deviate substantially from the average bubble velocity given by the homogeneous model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700