Axial deformability of the composite lattice cylindrical shell under compressive loading: Application to a load-carrying spacecraft tubular body
详细信息    查看全文
文摘
Analysis of axial deformability of filament-wound composite anisogrid lattice tubular body of the spacecraft subjected to compressive loading is presented in the paper. The axial compressive load is applied to the lattice cylinder through the rigid ring attached to its end. The lattice structure is modelled using a continuum model of the orthotropic cylindrical shell. Based on this model, an analytical formula providing the value of the axial deformation of the rigid ring and assessment of the shell’s axial stiffness is derived. This formula is verified by the finite-element analysis and employed to investigate the effects of the length, number of helical ribs and their angle of orientation on the axial deformability of the lattice cylinder. Using these results the full size physical prototype of the spacecraft body was designed, manufactured and tested. The axial displacement predicted by the analytical formula is correlated well with that measured in the experiment. Thus, the analytical formula proposed in this work can be utilised by design engineers in the efficient design analyses of similar composite lattice structural components.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700