Information matrix and D-optimal design with Gaussian inputs for Wiener model identification
详细信息    查看全文
文摘
We present a closed form expression for the Fischer’s information matrix associated with the identification of Wiener models. In the derivation we assume that the input signal is Gaussian. The analysis allows the linear sub-system in the Wiener model to have a generic rational transfer function of arbitrary order. It also allows the static nonlinearity of the Wiener model to be a polynomial of arbitrary degree. In addition, we show how this analysis can be used to design tractable algorithms for D-optimal input design. The idea is further extended to design optimal inputs consisting of a sequence of Gaussian signals with different mean values and variances. By combining Gaussian inputs with different means we can tune the amplitude distribution of the input to achieve the best identification accuracy in D-optimal sense. The analytical results are also illustrated with some numerical simulations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700