Facile synthesis of flower-like platinum nanostructures as an efficient electrocatalyst for methanol electro-oxidation
详细信息    查看全文
文摘
This paper presents a facile approach for the synthesis of a novel Pt/graphene-nickel foam (Pt/GNF) electrode composed of flower-like Pt nanoparticles (NPs) and 3D graphene. The fabrication process involved the chemical vapor deposition of graphene onto Ni foam as a substrate and the subsequent growth of Pt NPs via a galvanic replacement reaction without using any seed and organic solvent. The surface morphology and composition of the prepared materials were characterized. Meanwhile, cyclic voltammetry and electrochemical impedance spectroscopy were employed to confirm their typical electrochemical characteristics. The as-prepared nanocomposites displayed enhanced catalytic activity and kinetics toward methanol electro-oxidation. Such an excellent performance can be ascribed to the high dispersion of flower-like Pt NPs and to the exposure of more sites provided by the flower-like structure. The improved stability, decreased charge transfer resistance, and enhanced reaction rate of the nanocomposites promise new opportunities for the development of direct methanol fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700