The ApoA-I mimetic peptide FAMP promotes recovery from hindlimb ischemia through a nitric oxide (NO)-related pathway
详细信息    查看全文
文摘
HDL has various atheroprotective functions and improves endothelial function. Apolipoprotein A-I (apoA-I) is a major protein of HDL and plays a crucial role in HDL functions. We developed a novel apoA-I mimetic peptide, FAMP (Fukuoka University ApoA-I Mimetic Peptide). It is unclear whether an apoA-I mimetic peptide can promote neovascularization in vivo. Here, we investigated the effect of FAMP on endothelial nitric oxide synthase (eNOS) activation and angiogenesis in a murine hindlimb ischemia model.

Methods and results

Intramuscular administration of FAMP significantly enhanced blood flow recovery and increased capillary density in the ischemic limb of mice fed a high-cholesterol diet (HCD). In a gait analysis, FAMP ameliorated functional recovery compared with that in the control group. FAMP significantly activated Akt, ERK, and eNOS phosphorylation in endothelial cells, and improved the migratory functions of human aortic endothelial cells (HAECs). LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3K), significantly inhibited the activation of eNOS by FAMP. FAMP had no beneficial effects on blood flow recovery in eNOS−/− mice.

Conclusions

FAMP promoted recovery from hindlimb ischemia through a nitric oxide (NO)-related pathway by activation of a PI3K/Akt pathway. FAMP may become a new therapeutic agent for the future clinical treatment of critical limb ischemia (CLI).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700