Well-balanced hybrid compact-WENO scheme for shallow water equations
详细信息    查看全文
文摘
We investigate the performance of the high order well-balanced hybrid compact-weighted essentially non-oscillatory (WENO) finite difference scheme (Hybrid) for simulations of shallow water equations with source terms due to a non-flat bottom topography. The Hybrid scheme employs the nonlinear fifth order characteristic-wise WENO-Z finite difference scheme to capture high gradients and discontinuities in an essentially non-oscillatory manner, and the linear spectral-like sixth order compact finite difference scheme to resolve the fine scale structures in the smooth regions of the solution efficiently and accurately. The high order multi-resolution analysis is employed to identify the smoothness of the solution at each grid point. In this study, classical one- and two-dimensional simulations, including a long time two-dimensional dam-breaking problem with a non-flat bottom topography, are conducted to demonstrate the performance of the hybrid scheme in terms of the exact conservation property (C-property), good resolution and essentially non-oscillatory shock capturing of the smooth and discontinuous solutions respectively, and up to 2–3 times speedup factor over the well-balanced WENO-Z scheme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700