Information content with low- vs. high-Tc SQUID arrays in MEG recordings: The case for high-Tc SQUID-based MEG
详细信息    查看全文
文摘

Background

Magnetoencephalography (MEG) is a method of studying brain activity via recordings of the magnetic field generated by neural activity. Modern MEG systems employ an array of low critical-temperature superconducting quantum interference devices (low-Tc SQUIDs) that surround the head. The geometric distribution of these arrays is optimized by maximizing the information content available to the system in brain activity recordings according to Shannon's theory of noisy channel capacity.

New method

Herein, we present a theoretical comparison of the performance of low- and high-Tc SQUID-based multichannel systems in recordings of brain activity.

Results

We find a high-Tc SQUID magnetometer-based multichannel system is capable of extracting at least 40% more information than an equivalent low-Tc SQUID system. The results suggest more information can be extracted from high-Tc SQUID MEG recordings (despite higher sensor noise levels than their low-Tc counterparts) because of the closer proximity to neural sources in the brain.

Comparison with existing methods

We have duplicated previous results in terms of total information of multichannel low-Tc SQUID arrays for MEG. High-Tc SQUID technology theoretically outperforms its conventional low-Tc counterpart in MEG recordings.

Conclusions

A full-head high-Tc SQUID-based MEG system's potential for extraction of more information about neural activity can be used to, e.g., develop better diagnostic and monitoring techniques for brain disease and enhance our understanding of the working human brain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700