Modelling PAH curvature in laminar premixed flames using a detailed population balance model
详细信息    查看全文
文摘
A detailed population balance model, which includes the kinetic Monte Carlo-aromatic site (KMC-ARS) model for detailed polycyclic aromatic hydrocarbon (PAH) growth, is used to compute the Gauss curvature of PAHs in laminar premixed ethylene and benzene flames. Previous studies have found that capping of an embedded 5-member ring causes curvature in graphene edges. In this work, a capping process is added to the KMC-ARS model with the rate coefficient of the capping reaction taken from the work of You et al. (2011). We demonstrate that the Gauss–Bonnet theorem can be used to derive a correlation between the number of 5- and 6-member rings in a PAH and its Gauss curvature (or radius of curvature), independent of where the 5-member ring is embedded within the PAH structure. Numerical simulation yields satisfactory results when compared to the experimentally determined Gauss curvature reported in the literature. Computed and experimental fringe length distributions are also compared and the results suggest that PAHs smaller than the size required for inception are able to condense onto particles.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700