Island coalescence and diffusion along kinked steps on Cu(0 0 1): Evidence for a large kink Ehrlich–Schwoebel barrier
详细信息    查看全文
文摘
Using temperature-variable scanning tunneling microscopy, we studied the coalescence of vacancy islands on Cu(0 0 1) in ultra-high vacuum. From the temperature dependence of the relaxation of merged vacancy islands to the equilibrium shape we obtain an activation energy of the island coalescence process of 0.76 eV. From that value we deduce an activation energy for the atomic hopping coefficient of EΓh=0.89 eV. Comparing our result with previous STM data on step fluctuations with dominant diffusion along straight step segments (EΓh=0.68 eV; [M. Giesen, S. Dieluweit, J. Mol. Catal. A: Chem. 216 (2004) 263]) and step fluctuations with kink crossing (EΓh=0.9 eV; [M. Giesen-Seibert, F. Schmitz, R. Jentjens, H. Ibach, Surf. Sci. 329 (1995) 47]), we conclude that there is a large extra barrier for diffusion of atoms across kinks on Cu(0 0 1) of the order of 0.23 eV. This is the first direct experimental evidence for the existence of a large kink Ehrlich–Schwoebel barrier on Cu(0 0 1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700