Chemical chaperone therapy: Luciferase assay for screening of β-galactosidase mutations
详细信息    查看全文
文摘
β-Galactosidosis is a group of disorder based on heterogeneous mutations of GLB1 gene coding for the lysosomal acid β-galactosidase (β-gal). A decrease of the β-gal enzyme activity results in progressive accumulation of substrates in somatic cells, particularly in neurons, leading to severe neuronal dysfunction. We have previously reported that N-octyl-4-epi-β-valienamine (NOEV), a chemical chaperone compound, stabilized various mutant human β-gal proteins and increased residual enzyme activities in cultured fibroblasts from human patients. These data proved a potential therapeutic benefit of chemical chaperone therapy for patients with missense β-gal. This effect is mutation specific. In this study, we have established a sensitive luciferase-based assay for measuring chaperone effect on mutant human β-gal. A dinoflagellate luciferase (Dluc) cDNA was introduced to the C-terminus of human β-gal. When COS7 cells expressing the Dluc-tagged human R201C β-gal was treated with NOEV, there happened a remarkable increase of the mutant β-gal activity. In the presence of NH4Cl, luciferase level in the medium increased in parallel with the enzyme activity in cell lysates. We also found that proteasome inhibitors enhance chaperone effect of NOEV. These results demonstrate that the luciferase-based assay is a reliable and convenient method for screening and evaluation of chaperone effects on human β-gal mutants, and that it will be a useful tool for finding novel chaperone compounds in the future study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700