Numerical simulations of cyclic behaviors in light alloys under isothermal and thermo-mechanical fatigue loadings
详细信息    查看全文
文摘
In this article, numerical simulations of cyclic behaviors in light alloys are conducted under isothermal and thermo-mechanical fatigue loadings. For this purpose, an aluminum alloy (A356) which is widely used in cylinder heads and a magnesium alloy (AZ91) which can be applicable in cylinder heads are considered to study their stress-strain hysteresis loops. Two plasticity approaches including the Chaboche鈥檚 hardening model and the Nagode鈥檚 spring-slider model are applied to simulate cyclic behaviors. To validate obtained results, strain-controlled fatigue tests are performed under low cycle and thermo-mechanical fatigue loadings. Numerical results demonstrate a good agreement with experimental data at the mid-life cycle of fatigue tests in light alloys. Calibrated material constants based on low cycle fatigue tests at various temperatures are applied to models to estimate the thermo-mechanical behavior of light alloys. The reason is to reduce costs and the testing time by performing isothermal fatigue experiments at higher strain rates.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700