Disassembly sequence structure graphs: An optimal approach for multiple-target selective disassembly sequence planning
详细信息    查看全文
文摘
Modern green products must be easy to disassemble. Specific target components must be accessed and removed for repair, reuse, recycling, or remanufacturing. Prior studies describe various methods for removing selective targets from a product. However, solution quality, model complexity, and searching time have not been considered thoroughly. The goal of this study is to improve solution quality, minimize model complexity, and reduce searching time. To achieve the goal, this study introduces a new ¡®disassembly sequence structure graph?(DSSG) model for multiple-target selective disassembly sequence planning, an approach for creating DSSGs, and methods for searching DSSGs. The DSSG model contains a minimum set of parts that must be removed to remove selected targets, with an order and direction for removing each part. The approach uses expert rules to choose parts, part order, and part disassembly directions, based upon physical constraints. The searching methods use rules to remove all parts, in order, from the DSSG. The DSSG approach is an optimal approach. The approach creates a high quality minimum-size model, in minimum time. The approach finds high quality, practical, realistic, physically feasible solutions, in minimum time. The solutions are optimized for number of removed parts, part order, part disassembly directions, and reorientations. The solutions remove parts in practical order. The solutions remove parts in realistic directions. The solutions consider contact, motion, and fastener constraints. The study also presents eight new design rules. The study results can be used to improve the product design process, increase product life-cycle quality, and reduce product environmental impact.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700