Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation
详细信息    查看全文
文摘
The g-C3N4/Ag3VO4 hybrid photocatalysts were prepared by Ag3VO4 anchoring on the surface of g-C3N4. The transmission electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photo-electron spectroscopy analyses demonstrated that Ag3VO4 nanoparticles well distributed on the surface of g-C3N4 and the g-C3N4/Ag3VO4 hetero-junctions were formed. Compared with pure g-C3N4 and Ag3VO4, the g-C3N4/Ag3VO4 hybrid materials displayed much higher photocatalytic activity for basic fuchsin degradation (20 mg/L, 50 mL) under visible-light irradiation. The 40 wt % g-C3N4/Ag3VO4 photocatalyst exhibited optimal removal rate constant of 0.92 h?1, which was 11.5 and 6.6 times higher than that of pure g-C3N4 and Ag3VO4, respectively. Density functional theory calculations indicated that complementary conduction and valence band-edge hybridization between g-C3N4 and Ag3VO4 could apparently increase separation efficiency of electron-hole pairs of g-C3N4/Ag3VO4 composites, which was confirmed by photoluminescence spectra. In addition, it was found that h+ and ?O2?1generated in the photocatalytic process played a key role in basic fuchsin degradation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700