Ultrafine WC nanoparticles anchored on co-encased, N-doped carbon nanotubes for efficient hydrogen evolution
详细信息    查看全文
文摘
The high-activity electrocatalysts for the hydrogen evolution reaction (HER) are highly desired to replace precious Pt, but difficult to achieve. Herein, we report the loading of ultrafine tungsten carbide (WC) nanoparticles (NPs) on cobalt-embedded, bamboo-like, nitrogen-doped carbon nanotubes (WC/Co@NCNTs) with high-level N doping via a one-step strategy, leading to a desirable multicomponent nanocomposite with superior activity and stability when used as the HER electrocatalyst. The optimized WC/Co@NCNTs showed a very low onset overpotential (Uonset) of ~18 mV, a small Tafel slope of 52 mV dec−1, a small η10 of only 98 mV to reach a current of 10 mA cm−2, and a large exchange current density (j0) of 0.103 mA cm−2, which also retained its high activity for at least 12.5 h operation in acidic electrolyte. The DFT calculations revealed an important role of the N dopants in the HER as well as a favorable ΔGH* for the adsorption and desorption of hydrogen derived from the synergistic effects between WC NPs and Co@NCNTs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700