Pure red electrophosphorescence from polymer light-emitting diodes doped with highly emissive bis-cyclometalated iridium(III) complexes
详细信息    查看全文
文摘
In order to develop highly emissive red phosphorescent materials for OLED application, novel bis-cyclometalated iridium(III) complexes were developed using the 1-(dibenzo[b,d]furan-4-yl)isoquinolinato-N,C3′ (dbfiq) cyclometalating ligand. When 1,3-bis(3,4-dibutoxyphenyl)propane-1,3-dionate (bdbp) is employed as an ancillary ligand, Ir(dbfiq)2(bdbp) 1 exhibits red photoluminescence (PL) at 640 nm with a quantum yield (ΦPL) of 0.61 (in toluene, 298 K). Replacement of bdbp to dipivaloylmethanate (dpm) and acetylacetonate (acac) (Ir(dbfiq)2(dpm) 2 and Ir(dbfiq)2(acac) 3, respectively) does not affect the PL spectrum, but reduces ΦPL to 0.55 and 0.49 for 2 and 3, respectively. Similar tendency is also found in the doped poly(methyl methacrylate) (PMMA) film, and 1 is more emissive (ΦPL = 0.17) than 2 and 3 (ΦPL = 0.08 and 0.06, respectively). Using 1 as a phosphorescent dopant, polymer light-emitting diodes (PLEDs) were fabricated, of which structure was ITO/PEDOT:PSS (40 nm)/PVCz:1:PBD (100 nm)/CsF (1 nm)/Al (250 nm). Pure red electroluminescence (EL) is obtained from the fabricated PLEDs, affording a CIE chromaticity coordinate of (0.68, 0.31). When 0.51 mol % of 1 is incorporated in the PVCz-based emitting layer, the PLED shows maximum luminance of 7270 cd m−2 at 16.5 V, power efficiency of 1.4 lm W−1 at 7.5 V, and external quantum efficiency of 6.4 % at 9.0 V. PLEDs with the same structure and components were also fabricated using 2 and 3, and their device characteristics were investigated. In proportion to the PL quantum yields, 1 affords better device performance than 2 and 3. Owing to four butoxy groups introduced to the bdbp ligand, 1 exhibits high solubility in organic solvents such as chloroform and toluene, and thus, is an excellent red phosphorescent dopant for solution-processed OLEDs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700