Pulse-Height Distribution Analysis for Superconducting Nanostripline Ion Detector with a Fast Pulse-Integration Analog-Todigital Converter
详细信息    查看全文
文摘
Superconducting nano-stripline structure is promising for realizing an ideal ion detector for mass spectrometry (MS); nano-second time resolution and mass-independent detection efficiency from atoms to proteins. We report the first pulse-height spectra of a superconducting nano-stripline ion detector (SSLD) by a pulse-integration analog-to-digital converter (PIADC). A niobium nitride (NbN)-SSLD had a meander structure of the stripline with a thickness of 10 nm and a linewidth of 800 nm on an MgO substrate. A matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer or a double-focusing mass spectrometer was used to produce and accelerate biomolecule ions (bovine serum albumin) with a molecular weight (MW) of 66,400 and Ar ions with an atomic weight (AW) of 40. Output pulse height did not depend on the MW or ion species for a wide mass range. Moreover, measured pulse-height distribution indicates that our SSLD system is so fast enough to discriminate the simultaneous ion incidence within 200 ns, which is close to the virtual dead time of time-to-digital converters (TDCs) at the practical usage in TOF MS for macromolecules.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700