The catalytic efficiency (kcat/Km) of the class A β-lactamase Toho-1 correlates with the thermal stability of its catalytic intermediate analog
详细信息    查看全文
文摘
The extended-spectrum β-lactamases are associated with antibiotic resistance. Toho-1 R274N/R276N, a Class A β-lactamase of CTX-M-type, efficiently hydrolyzes first generationcephalosporins (for example, cephalothin), in addition to cefotaxime, a third generation cephalosporin. However, this enzyme only marginally hydrolyzes the third generation cephalosporin ceftazidime, and the monobactam aztreonam. The deacylation defectiveness of the mutant Toho-1 E166A/R274N/R276N, which lacks the deacylation activity, results in the accumulation of the complex of an acylated-enzyme intermediate analog. For drug design, it would be useful if a quantitative prediction of a catalytic property were available without the need of enzymatic measurements. Therefore, we examined whether there is a correlation between the thermal stability of a catalytic intermediate (analog) and its kinetic parameters. First we measured the hydrolytic kinetics of the 14 species of β-lactam antibiotics by Toho-1 R274N/R276N, and also measured the thermal stability of the accumulated acyl-intermediates of Toho-1 E166A/R274N/R276 by differential scanning calorimetry. Here we report the correlation of these parameters. The logarithm of the catalytic efficiency for Toho-1 R274N/R276N, log(kcat/Km) exhibited the best linear correlation with Tm, which is the heat-denaturation temperature midpoint of the corresponding acylated complex of Toho-1 E166A/R274N/R276N. The correlation coefficient was 0.947, indicating that a relationship exists between the kinetic parameters and the stability of the intermediates. The results demonstrate a new method for investigating the catalytic properties of enzymes against any substrates, and a new approach to designing enzymes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700