Glutamate and GABAB transmissions in lateral amygdala are involved in startle-like electromyographic (EMG) potentiation caused by activation of auditory thalamus
详细信息    查看全文
文摘
The lateral amygdala nucleus (LA) receives auditory inputs from both the auditory thalamus (medial geniculate nucleus, MGN) and auditory association cortex (AAC). These auditory inputs are closely linked with glutamate and GABAB receptors in the LA. The LA has intra-amygdaloid connections with the central amygdala nucleus, which mediates auditory fear potentiation of startle (AFPS) via pathways to the startle circuits. The purpose of the present study was to establish an electromyographic (EMG) model for studying AFPS-related neural transmissions in the LA. Hind-limb startle-like EMG responses to single-pulse electrical stimulation of the trigeminal nucleus (TN) were recorded in anesthetized rats. These EMG responses were enhanced by single-pulse sub-threshold electrical stimulation of the MGN when the MGN stimulus led the TN stimulus at short inter-stimulus intervals (ISI). However, the EMG responses were not affected by single-pulse sub-threshold electrical stimulation of the AAC. Bilateral injection of the glutamate antagonist, kynurenic acid, into the LA decreased both the EMG enhancement caused by MGN stimulation at short ISIs and EMG responses to combined TN and AAC stimulation across various ISIs. Moreover, bilateral injection of the GABAB antagonist, phaclofen, into the LA increased both EMG responses to combined TN and MGN stimulation across various ISIs, and EMG responses to combined TN and AAC stimulation at short ISIs. These results suggest that the auditory inputs to the LA from the MGN and those from the AAC are affected differently by glutamate and GABAB receptors in the LA, and play differential roles in modulating startle responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700