Molecular interference of Cd2+ with Photosystem II
详细信息    查看全文
文摘
Many heavy metals inhibit electron transfer reactions in Photosystem II (PSII). Cd2+ is known to exchange, with high affinity in a slow reaction, for the Ca2+ cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center. This results in inhibition of photosynthetic oxygen evolution. There are also indications that Cd2+ binds to other sites in PSII, potentially to proton channels in analogy to heavy metal binding in photosynthetic reaction centers from purple bacteria. In search for the effects of Cd2+-binding to those sites, we have studied how Cd2+ affects electron transfer reactions in PSII after short incubation times and in sites, which interact with Cd2+ with low affinity. Overall electron transfer and partial electron transfer were studied by a combination of EPR spectroscopy of individual redox components, flash-induced variable fluorescence and steady state oxygen evolution measurements. Several effects of Cd2+ were observed: (i) the amplitude of the flash-induced variable fluorescence was lost indicating that electron transfer from YZ to P680+ was inhibited; (ii) QAaaa to QB electron transfer was slowed down; (iii) the S2 state multiline EPR signal was not observable; (iv) steady state oxygen evolution was inhibited in both a high-affinity and a low-affinity site; (v) the spectral shape of the EPR signal from QAaaaFe2+ was modified but its amplitude was not sensitive to the presence of Cd2+. In addition, the presence of both Ca2+ and DCMU abolished Cd2+-induced effects partially and in different sites. The number of sites for Cd2+ binding and the possible nature of these sites are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700