Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-κB in human aortic smooth muscle cells
详细信息    查看全文
文摘
Inflammation-induced changes in the activity and expression of NADPH oxidases (Nox) play a key role in atherogenesis. The molecular mechanisms of Nox regulation are scantily elucidated. Since nuclear factor-κB (NF-κB) controls the expression of many genes associated to inflammation-related diseases, in this study we have investigated the role of NF-κB signaling in the regulation of Nox1 and Nox4 transcription in human aortic smooth muscle cells (SMCs). Cultured cells were exposed to tumor necrosis factor-α (TNFα), a potent inducer of both Nox and NF-κB, up to 24 h. Lucigenin-enhanced chemiluminescence and dichlorofluorescein assays, real-time polymerase chain reaction, and Western blot analysis showed that inhibition of NF-κB pathway reduced significantly the TNFα-dependent up-regulation of Nox-derived reactive oxygen species production, Nox1 and Nox4 expression. In silico analysis indicated the existence of typical NF-κB elements in the promoters of Nox1 and Nox4. Transient overexpression of p65/NF-κB significantly increased the promoter activities of both isoforms. Physical interaction of p65/NF-κB proteins with the predicted sites was demonstrated by chromatin immunoprecipitation assay. These findings demonstrate that NF-κB is an essential regulator of Nox1- and Nox4-containing NADPH oxidase in SMCs. Elucidation of the complex relationships between NF-κB and Nox enzymes may lead to a novel pharmacological strategy to reduce both inflammation and oxidative stress in atherosclerosis and its associated complications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700